Generative Adversarial Network
- Input: x, z(distribution)
- output: y(complex distribution)
Discriminator
Adversarial (Natural selection)
Generator vs Discriminator
[Fix G, update D] or [Fix D, update G]
Interpolation
Divergence
Sampling
Training:
Wasserstein distance
Earth mover
Too many possible moving plans → chose the shortest distance
→ smooth enough
If not 1-Lipschitz
: Expected value of Discriminator from data ()
Evaluation
Image classifier
Collapse
- Mode collapse
Too restrict
- Mode dropping
No diversity
- Mode collapse
Diversity
- Low diversity
- High diversity
Fréchet inception distance
Calculate differences before softmax
Conditional generator
Unpaired data
Unsupervised learning
domain to domain
Cycle GAN